

Trench gate field-stop IGBT, HB series 650 V, 30 A high speed in a TO-247 long leads package

Datasheet - production data

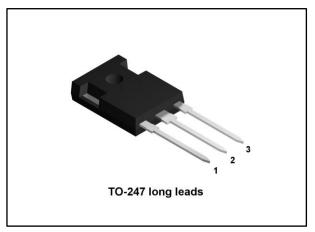
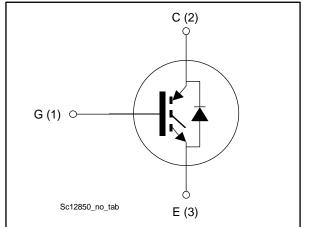



Figure 1: Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- High speed switching series
- Minimized tail current
- Low saturation voltage: V_{CE(sat)} = 1.55 V (typ.) @ I_C = 30 A
- Tight parameter distribution
- Safe paralleling
- Low thermal resistance
- Very fast soft recovery antiparallel diode

Applications

- Photovoltaic inverters
- High frequency converters

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the new HB series of IGBTs, which represents an optimum compromise between conduction and switching loss to maximize the efficiency of any frequency converter. Furthermore, the slightly positive $V_{CE(sat)}$ temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGWA30H65DFB	GWA30H65DFB	TO-247 long leads	Tube

This is information on a product in full production.

Contents

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	7
3	Test cir	rcuits	12
4	Packag	e mechanical data	13
	4.1	TO-247 long leads package information	13
5	Revisio	on history	15

1 Electrical ratings

 Table 2: Absolute maximum ratings

Symbol	Parameter Value			
VCES	Collector-emitter voltage (V _{GE} = 0 V)	650	V	
1-	Continuous collector current at T _C = 25 °C	60	٨	
lc	Continuous collector current at T _c = 100 °C	30	A	
ICP ⁽¹⁾	Pulsed collector current 120		А	
V_{GE}	Gate-emitter voltage ±20		V	
1_	Continuous forward current at $T_C = 25$ °C	60	А	
IF	Continuous forward current at T _C = 100 °C	30	A	
IFP ⁽¹⁾	Pulsed forward current	120	А	
Ртот	Total dissipation at T _c = 25 °C 260		W	
Tstg	Storage temperature range	- 55 to 150		
TJ	Operating junction temperature range	- 55 to 175		

Notes:

 $^{(1)}\mbox{Pulse}$ width limited by maximum junction temperature.

Table 3: Thermal data

Symbol	Parameter Value		
RthJC	Thermal resistance junction-case IGBT 0.58		
RthJC	Thermal resistance junction-case diode 1.47		°C/W
R _{thJA}	Thermal resistance junction-ambient	50	

2 Electrical characteristics

 $T_C = 25 \ ^{\circ}C$ unless otherwise specified

Table 4: Static chara	cteristics
-----------------------	------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE} = 0 \text{ V}, \text{ I}_{C} = 2 \text{ mA}$	650			V
		$V_{GE} = 15 \text{ V}, I_C = 30 \text{ A}$		1.55	2	
VCF(sat)	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A, T _J = 125 °C		1.65		v
	Saturation voltage	$V_{GE} = 15 \text{ V}, I_C = 30 \text{ A},$ T _J = 175 °C		1.75		
		IF = 30 A		1.85	2.65	
VF	Forward on-voltage	I _F = 30 A, T _J = 125 °C		1.6		V
		I _F = 30 A, T _J = 175 °C		1.5		
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}, I_C = 1 \text{ mA}$	5	6	7	V
ICES	Collector cut-off current	$V_{GE} = 0 V, V_{CE} = 650 V$			25	μA
IGES	Gate-emitter leakage current	$V_{CE} = 0 V, V_{GE} = \pm 20 V$			±250	nA

Table 5: Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	3570	•	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	143	I	pF
Cres	Reverse transfer capacitance		-	75	-	P
Qg	Total gate charge	Vcc = 520 V, Ic = 30 A,	-	149	-	
Q _{ge}	Gate-emitter charge	V _{GE} = 0 to 15 V (see <i>Figure 29: " Gate charge</i>	-	25	-	nC
Q _{gc}	Gate-collector charge	test circuit")	-	62	-	

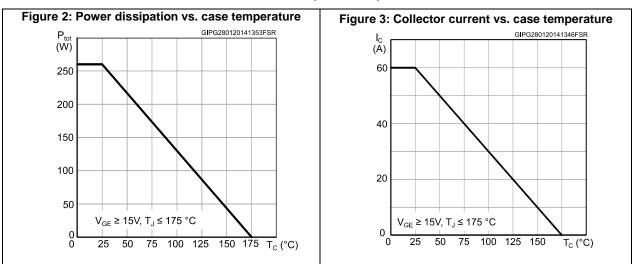
Electrical characteristics

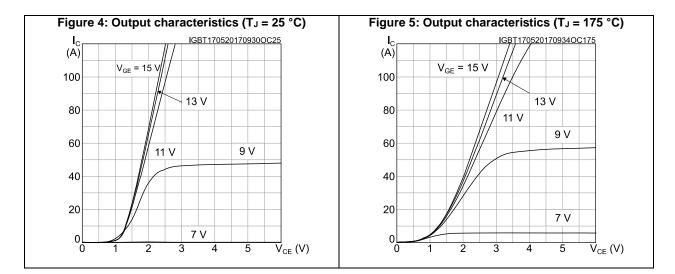
Table 6: IGBT switching characteristics (inductive load)						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	46	-	
tr	Current rise time		-	14.6	-	ns
(di/dt) _{on}	Turn-on current slope		-	1616	-	A/µs
t _{d(off)}	Turn-off-delay time	V _{CE} = 400 V, I _C = 30 A,	-	146	-	
t _f	Current fall time	$V_{GE} = 15 V, R_G = 10 \Omega$	-	23	-	ns
Eon ⁽¹⁾	Turn-on switching energy	(see Figure 28: " Test circuit for inductive load switching")	-	382	-	
E _{off} ⁽²⁾	Turn-off switching energy		-	293	-	μJ
Ets	Total switching energy		-	675	-	
t _{d(on)}	Turn-on delay time		-	45	-	20
tr	Current rise time		-	17.8	-	ns
(di/dt) _{on}	Turn-on current slope		-	1393	-	A/µs
t _{d(off)}	Turn-off-delay time	$V_{CE} = 400 \text{ V}, \text{ Ic} = 30 \text{ A},$	-	158	-	20
tf	Current fall time	V _{GE} = 15 V, R _G = 10 Ω, T _J = 175 °C	-	65	-	ns
Eon ⁽¹⁾	Turn-on switching energy	(see Figure 28: " Test circuit for inductive load switching")	-	725	-	
E _{off} ⁽²⁾	Turn-off switching energy		-	572	-	μJ
E _{ts}	Total switching energy		-	1297	-	

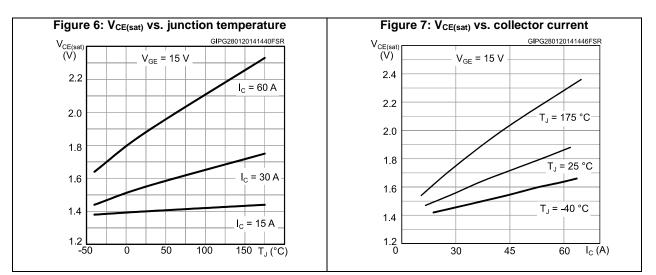
Notes:

 $^{(1)}\mbox{Including the reverse recovery of the diode.}$

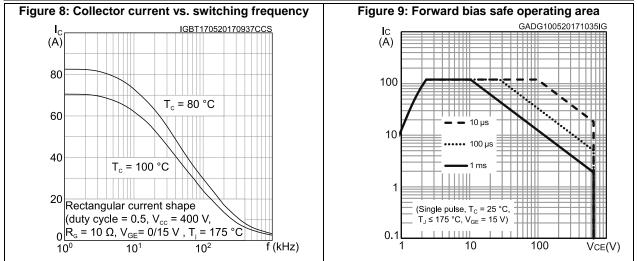
 $^{\mbox{(2)}}\mbox{Including the tail of the collector current.}$

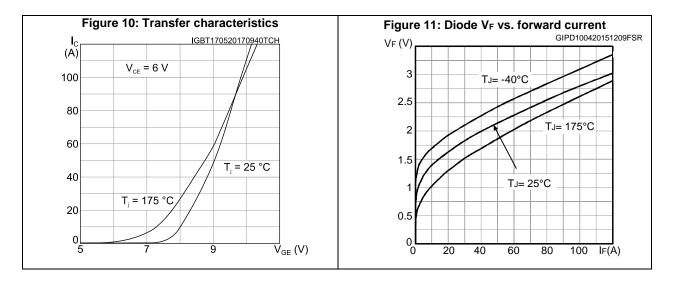

Electrical characteristics

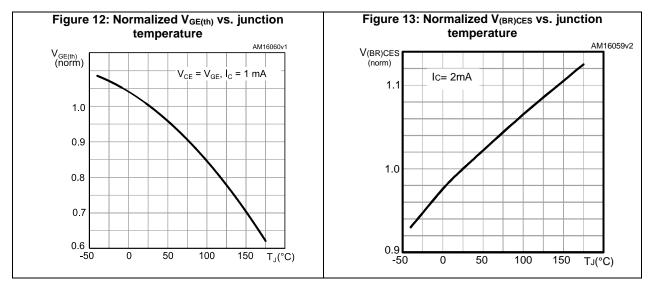

haracteri	stics			STGW	A30H6	5DFB
	Table 7: Diode	e switching characteristics (inducti	ve load	l)		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	140	-	ns
Qrr	Reverse recovery charge	I _F = 30 A, V _R = 400 V, V _{GE} = 15 V, di/dt = 1000 A/ μ s (see Figure 28: " Test circuit for inductive load switching")	-	880	-	nC
Irrm	Reverse recovery current		-	17	-	А
dlrr/dt	Peak rate of fall of reverse recovery current during t _b		-	650	-	A/µs
Err	Reverse recovery energy		-	115	-	μJ
trr	Reverse recovery time		-	244	-	ns
Qrr	Reverse recovery charge		-	2743	-	nC
Irrm	Reverse recovery current	$ I_F = 30 \text{ A}, V_R = 400 \text{ V}, V_{GE} = 15 \text{ V}, \\ di/dt = 1000 \text{ A}/\mu \text{s}, T_J = 175 ^\circ \text{C} $	-	25	-	А
dlrr/dt	Peak rate of fall of reverse recovery current during t _b	(see Figure 28: " Test circuit for inductive load switching")	-	220	-	A/µs
Err	Reverse recovery energy		-	320	-	μJ

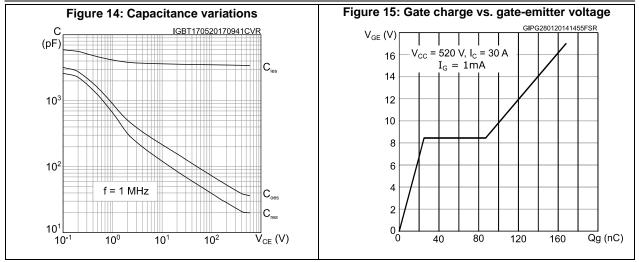


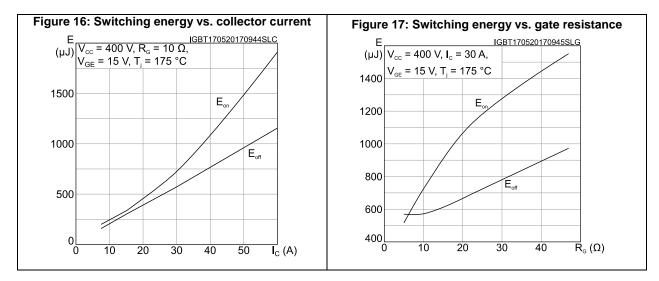
57

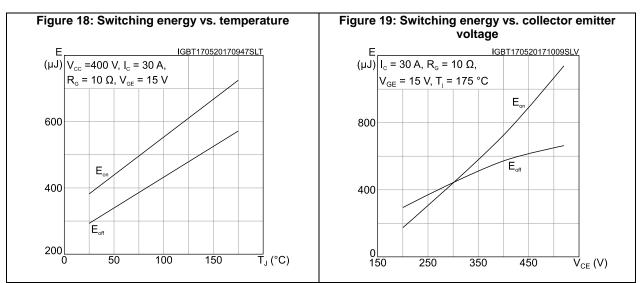

2.1 Electrical characteristics (curves)





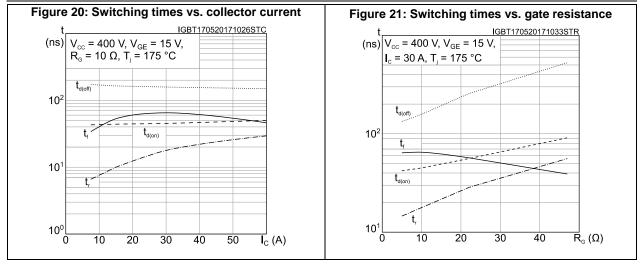


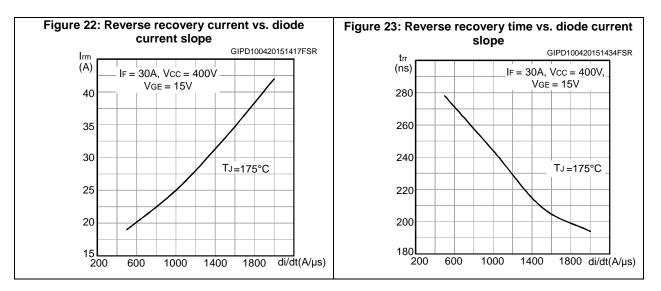


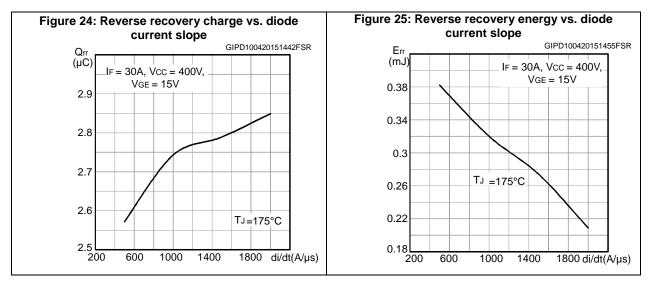


57

Electrical characteristics

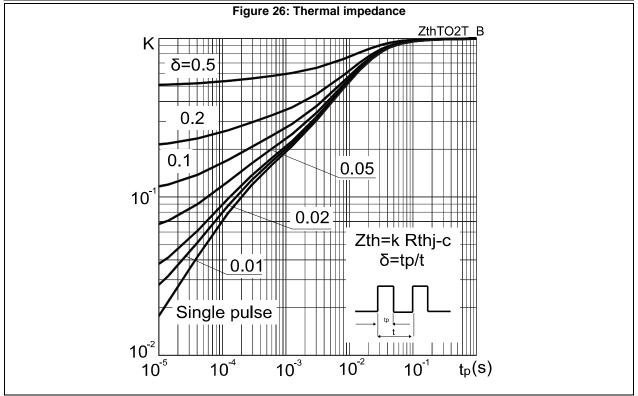




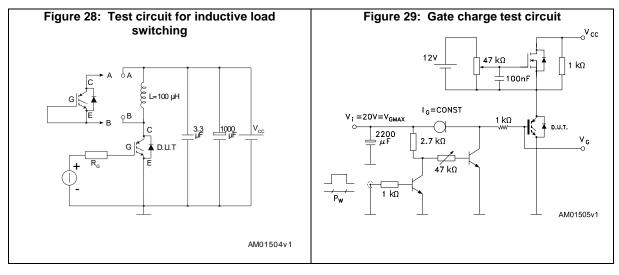


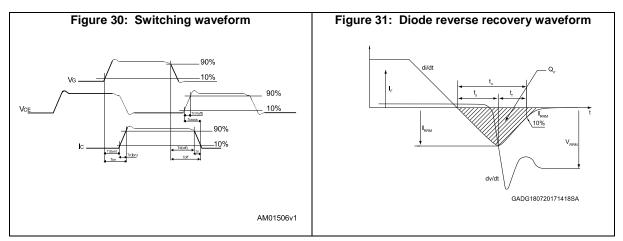
Electrical characteristics

STGWA30H65DFB






57


Electrical characteristics

3 Test circuits

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-247 long leads package information

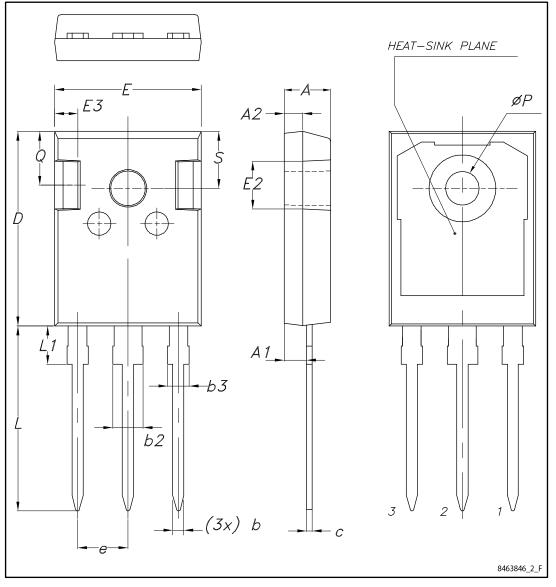


Figure 32: TO-247 long leads package outline

Package mechanical data

STGWA30H65DFB

Table 8: TO-247 long leads package mechanical data				
Dim		mm		
Dim.	Min.	Тур.	Max.	
А	4.90	5.00	5.10	
A1	2.31	2.41	2.51	
A2	1.90	2.00	2.10	
b	1.16		1.26	
b2			3.25	
b3			2.25	
С	0.59		0.66	
D	20.90	21.00	21.10	
E	15.70	15.80	15.90	
E2	4.90	5.00	5.10	
E3	2.40	2.50	2.60	
е	5.34	5.44	5.54	
L	19.80	19.92	20.10	
L1			4.30	
Р	3.50	3.60	3.70	
Q	5.60		6.00	
S	6.05	6.15	6.25	

5 Revision history

Date	Revision	Changes
16-May-2017	1	Initial version.
22-Nov-2017	2	Modified title and <i>Table 7: "Diode switching characteristics (inductive load)".</i> Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

