Power MOSFET

30 V, 10.7 A, Single N–Channel, 2.0x2.0x0.55 mm μCool™ UDFN6 Package

Features

- Low Profile UDFN 2.0 x 2.0 x 0.55 mm for Board Space Saving with Exposed Drain Pads for Excellent Thermal Conduction
- Ultra Low R_{DS(on)} to Reduce Conduction Losses
- Optimized Gate Charge to Reduce Switching Losses
- Low Capacitance to Minimize Driver Losses
- NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

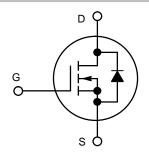
- Power Load Switch
- Synch DC–DC Converters
- Wireless Charging Circuit

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	30	V
Gate-to-Source Vol	tage		V_{GS}	±20	V
Continuous Drain	Steady	T _A = 25°C	I _D	10.7	Α
Current (Note 1)	State	T _A = 85°C		7.7	
	t ≤ 5 s	T _A = 25°C		15.1	
Power Dissipation (Note 1)			P _D	1.54	W
	t ≤ 5 s	T _A = 25°C		3.1	
Continuous Drain	Steady State	T _A = 25°C	I _D	6.8	Α
Current (Note 2)	State	T _A = 85°C		4.9	
Power Dissipation (Note 2) $T_A = 25^{\circ}C$		P_{D}	0.63	W	
Pulsed Drain Current $t_p = 10 \mu s$			I _{DM}	43	Α
MOSFET Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 1)			IS	1.55	Α
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu.



ON Semiconductor®

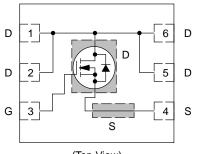
www.onsemi.com

MOSFET

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
	9 mΩ @ 10 V	
30 V	12 mΩ @ 4.5 V	10.7.1
	15 mΩ @ 3.7 V	10.7 A
	19 mΩ @ 3.3 V	

N-CHANNEL MOSFET

MARKING DIAGRAM


AG = Specific Device Code

M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient – Steady State (Note 3)	$R_{\theta JA}$	81	
Junction-to-Ambient – $t \le 5$ s (Note 3)	$R_{\theta JA}$	40.5	°C/W
Junction-to-Ambient – Steady State min Pad (Note 4)	$R_{\theta JA}$	200	

- 3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 4. Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS					-		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V$,	I _D = 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA	, ref to 25°C		12		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	$T_J = 25^{\circ}C$			1.0	μΑ
		V _{DS} = 24 V	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V,$	V _{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I _D = 250 μA	1.3		2.1	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J				4.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 \	V, I _D = 9.0 A		7.2	9	mΩ
		V _{GS} = 4.5	V, I _D = 8.0 A		9.3	12	
		V _{GS} = 3.7	V, I _D = 5.0 A		10.9	15	
		V _{GS} = 3.3	V, I _D = 5.0 A		13	19	
Forward Transconductance	9 _{FS}	V _{DS} = 15 \	V, I _D = 9.0 A		39		S
CHARGES, CAPACITANCES & GATE	RESISTANCE						
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,}$ $V_{DS} = 15 \text{ V}$			1172		pF
Output Capacitance	C _{OSS}				546		
Reverse Transfer Capacitance	C _{RSS}				26		
Total Gate Charge	Q _{G(TOT)}				8.4		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V	, V _{DS} = 15 V;		1.1		
Gate-to-Source Charge	Q _{GS}	I _D =	8.0 A		3.0		
Gate-to-Drain Charge	Q_{GD}	1			2.2		
Total Gate Charge	$Q_{G(TOT)}$	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 9.0 A			18		nC
SWITCHING CHARACTERISTICS, VG	S = 4.5 V (Note 6)			•			
Turn-On Delay Time	t _{d(ON)}				9.4		ns
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{DD} = 15 \text{ V},$ $I_{D} = 8.0 \text{ A}, R_{G} = 3 \Omega$			15		
Turn-Off Delay Time	t _{d(OFF)}				14		
Fall Time	t _f				3.5		
SWITCHING CHARACTERISTICS, VG	S = 10 V (Note 6)				-		
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 10 \text{ V}, V_{DD} = 15 \text{ V},$ $I_{D} = 9.0 \text{ A}, R_{G} = 3 \Omega$			6.3		ns
Rise Time	t _r				14		
Turn-Off Delay Time	t _{d(OFF)}				18		
Fall Time	t _f				2.4		

- 5. Pulse Test: pulse width \leq 300 $\mu s,$ duty cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

		· · · · · · · · · · · · · · · · · · ·	<u>'</u>				
Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units
DRAIN-SOURCE DIODE CHARAC	TERISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.72	1.1	V
		$V_{GS} = 0 V,$ $I_{S} = 1.5 A$	T _J = 125°C		0.52		
Reverse Recovery Time	t _{RR}				29		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V, dIs}$	s/dt = 100 A/μs,		14.1		
Discharge Time	t _b	I _S =	/dt = 100 A/μs, 1.5 A		14.9		
Reverse Recovery Charge	Q_{RR}				20		nC

- 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

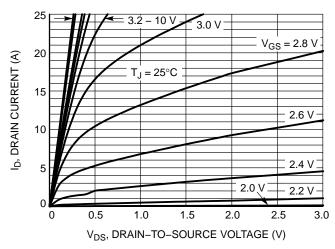


Figure 1. On-Region Characteristics

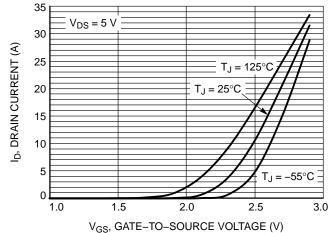


Figure 2. Transfer Characteristics

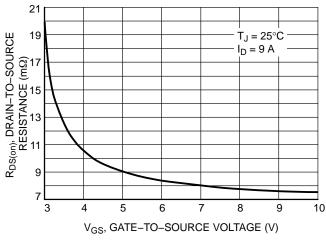


Figure 3. On-Resistance vs. Gate-to-Source Voltage

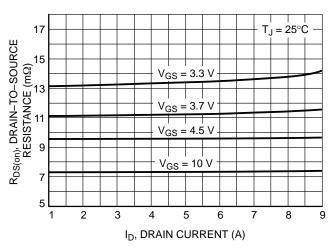


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

TYPICAL CHARACTERISTICS

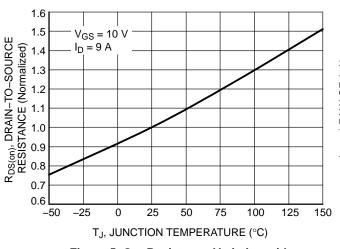


Figure 5. On–Resistance Variation with Temperature

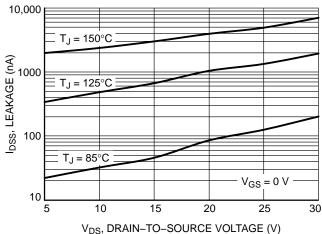


Figure 6. Drain-to-Source Leakage Current vs. Voltage

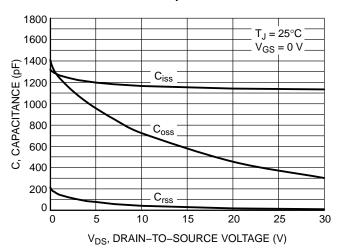


Figure 7. Capacitance Variation

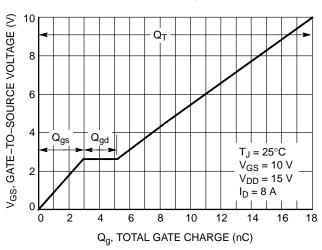


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

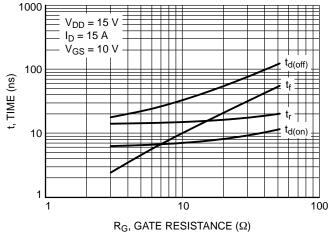


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

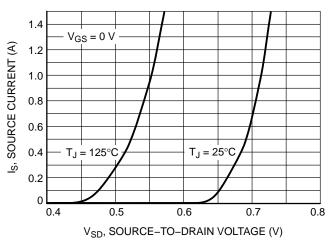


Figure 10. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

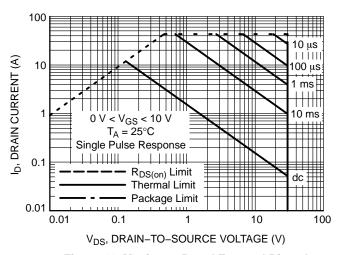


Figure 11. Maximum Rated Forward Biased Safe Operating Area

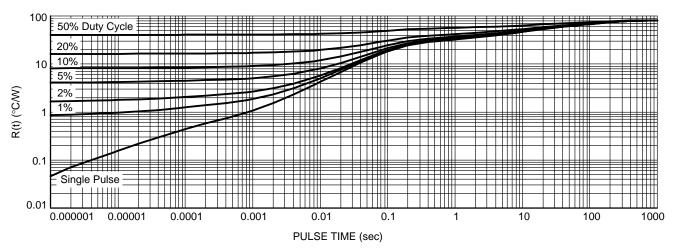
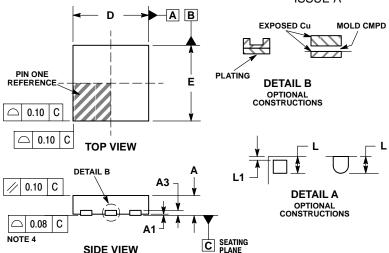


Figure 12. Thermal Response

DEVICE ORDERING INFORMATION

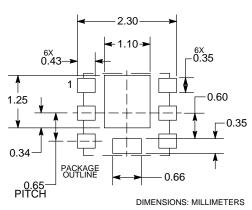

Device	Package	Shipping [†]
NVLUS4C12NTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

UDFN6 2x2, 0.65P

CASE 517BG **ISSUE A**



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 - CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION b APPLIES TO PLATED TERMINAL AND IS
- MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL
 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS
- THE TERMINALS.
 CENTER TERMINAL LEAD IS OPTIONAL. CENTER TERMINAL
- IS CONNECTED TO TERMINAL LEAD #
- 6. LEADS 1, 2, 5 AND 6 ARE TIED TO THE FLAG.

	. , .			
	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.55		
A1	0.00	0.05		
A3	0.13	REF		
b	0.25	0.35		
b1	0.51	0.61		
D	2.00) BSC		
D2	1.00	1.20		
E	2.00 BSC			
E2	1.10	1.30		
е	0.65 BSC			
K	0.15	REF		
J	0.27 BSC			
J1	0.65 BSC			
L	0.20	0.30		
L1		0.10		
L2	0.20	0.30		

D2-DETAIL A 6x L С 0.10 Α В **# E2** 0.05 С NOTE 5 CA 0.10 В 0.05 C NOTE 3 **BOTTOM VIEW**

RECOMMENDED **MOUNTING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and in are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative