
Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

For current package drawing, please refer to the Fairchild website at http://www.fairchildsemi.com/package-drawings/TO/ TO252A03.pdf.

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain to Source Voltage		40	V
V _{GS}	Gate to Source Voltage		±20	V
I _D	Drain Current Continuous (V _{GS} = 10V)		50	A
	Pulsed		Figure 4	A
E _{AS}	Single Pulse Avalanche Energy	(Note 1)	535	mJ
P _D	Power Dissipation		153	W
	Derate above 25°C		1.02	W/ºC
T _J , T _{STG}	Operating and Storage Temperature		-55 to +175	°C
$R_{\theta JC}$	Thermal Resistance Junction to Case		0.98	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient, 1in ² copper pad area		52	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8444	FDD8444_F085	TO-252AA	13"	12mm	2500 units

Notes:

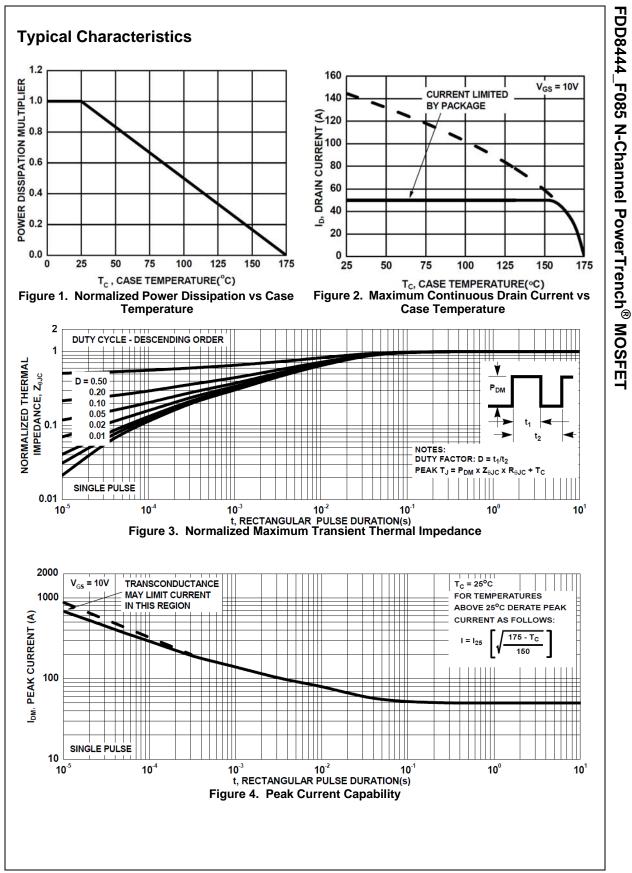
Solenoid and Motor Drivers

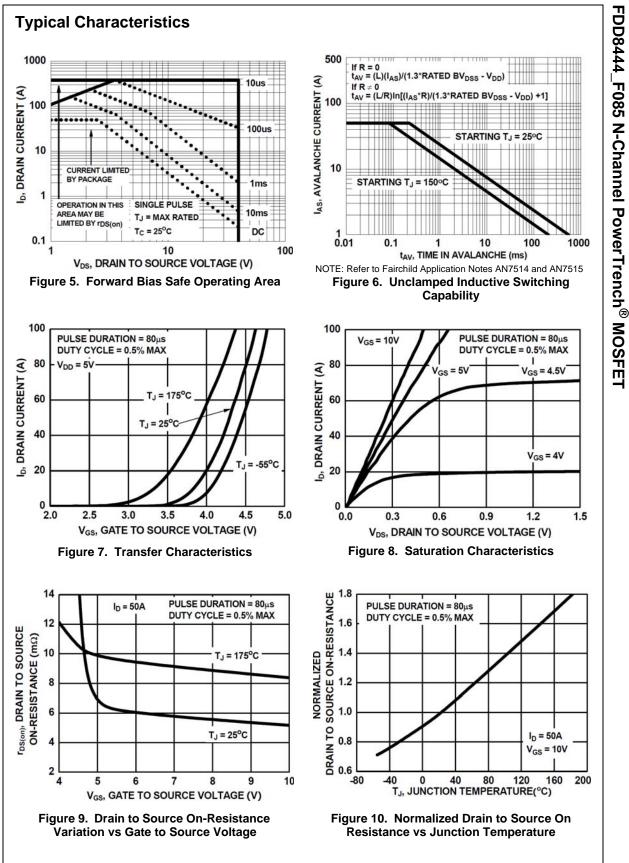
Primary Switch for 12V Systems

Distributed Power Architecture and VRMs

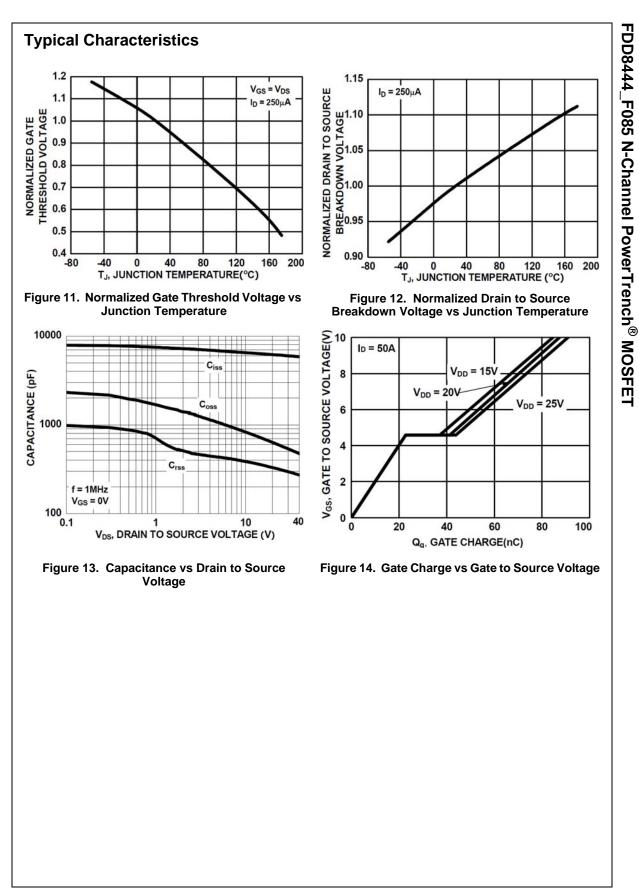
Electronic Transmission

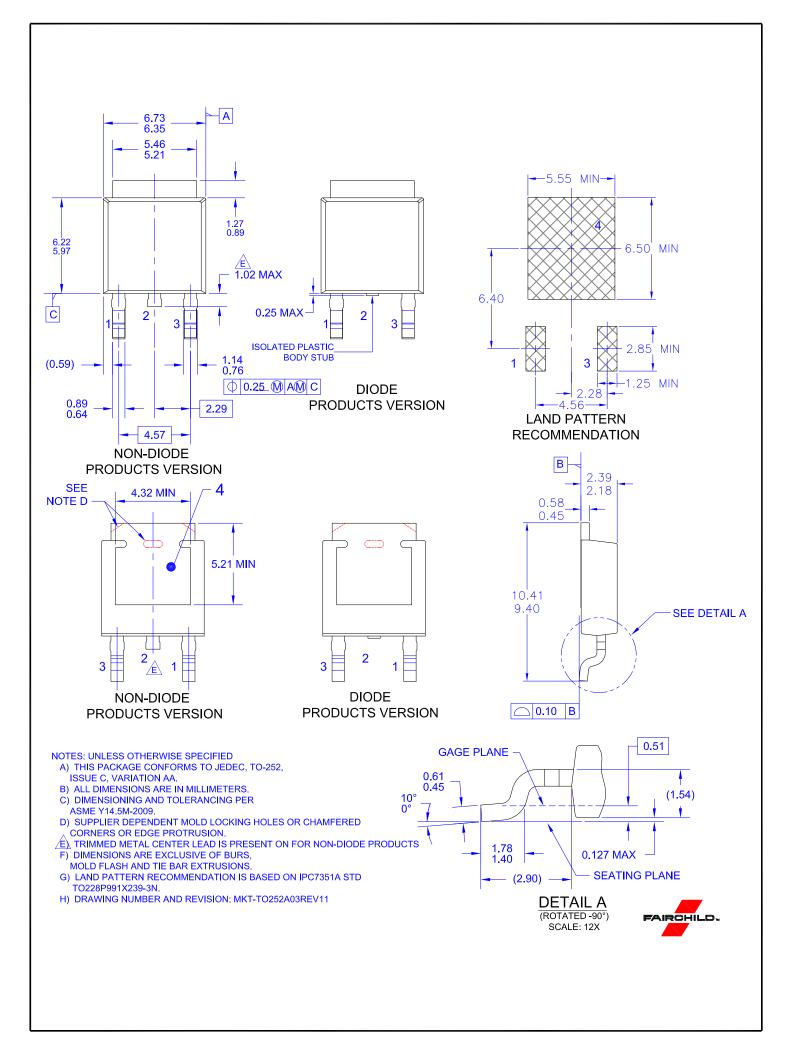
1: Starting $T_J = 25^{\circ}$ C, L = 0.67mH, I_{AS} = 40A 2: A suffix as "...F085P" has been temporarily introduced in order to manage a double source strategy as Fairchild has officially announced in Aug 2014.


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BVDSS	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	40	-	-	V
1	Zero Gate Voltage Drain Current	V _{DS} = 32V,	-	-	1	
DSS	Zero Gale voltage Drain Current	$V_{GS} = 0V \qquad \qquad T_A = 150^{\circ}C$	-	-	250	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$	-	-	±100	nA
√ _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	2.5	4	V
	aracteristics					
- GS(III)		$I_D = 50A, V_{GS} = 10V$	-	4	5.2	-
DS(on)	Drain to Source On Resistance	$I_D = 50A, V_{GS} = 10V$ $T_J = 175^{\circ}C$	-	7.2	9.4	mΩ
-	ic Characteristics	V _{DS} = 25V, V _{GS} = 0V,	-	6195 585	-	pF pF
	Output Capacitanaa	$v_{\rm DS} = 20v, v_{\rm GS} = 0v,$				
C _{oss}	Output Capacitance	$v_{DS} = 23v, v_{GS} = 0v,$ = f = 1MHz	-			
C _{oss} C _{rss}	Reverse Transfer Capacitance	f = 1MHz	-	332	-	pF
C _{oss} C _{rss} R _G	Reverse Transfer Capacitance Gate Resistance	f = 1MHz f = 1MHz	-	332 1.9	-	pF Ω
S _{oss} S _{rss} R _G Q _{g(TOT)}	Reverse Transfer CapacitanceGate ResistanceTotal Gate Charge at 10V	$f = 1MHz$ $f = 1MHz$ $V_{GS} = 0 \text{ to } 10V$		332 1.9 89		pF Ω nC
C _{iss} C _{oss} C _{rss} R _G Q _{g(TOT)} Q _{g(TH)}	Reverse Transfer Capacitance Gate Resistance	$f = 1MHz$ $f = 1MHz$ $V_{GS} = 0 \text{ to } 10V$ $V_{GS} = 0 \text{ to } 2V$ $V_{DD} = 20V$	-	332 1.9	-	pF Ω
C _{oss} C _{rss} R _G Q _{g(TOT)}	Reverse Transfer CapacitanceGate ResistanceTotal Gate Charge at 10V	$f = 1MHz$ $f = 1MHz$ $V_{GS} = 0 \text{ to } 10V$	-	332 1.9 89	-	pF Ω nC


Switching Characteristics

ton	Turn-On Time		-	-	135	ns
t _{d(on)}	Turn-On Delay Time		-	12	-	ns
t _r	Rise Time	$V_{DD} = 20V, I_D = 50A$ $V_{GS} = 10V, R_{GS} = 2Ω$	-	78	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10^{\circ}, R_{GS} = 20^{\circ}$	-	48	-	ns
t _f	Fall Time		-	15	-	ns
t _{off}	Turn-Off Time		-	-	95	ns


Drain-Source Diode Characteristics


V _{SD}	Source to Drain Diode Voltage	I _{SD} = 50A	-	-	1.25	V
		$I_{SD} = 25A$	-	-	1.0	v
t _{rr}	Reverse Recovery Time	I _{SD} = 50A, dI _{SD} /dt = 100A/μs	-	39	51	ns
Q _{rr}	Reverse Recovery Charge		-	45	59	nC

L ©2016 Fairchild Semiconductor Corporation FDD8444_F085 Rev. 1.3

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC